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a  b  s  t  r  a  c  t

This  paper  presents  a mathematical  integrated  model  that  simulates  the coupled  events  causing  flashover
due to  the  deposition  of soot  particles  on  suspension  insulators  of  high  voltage  transmission  lines  (HVTL).
The  model  considers  non-steady  three-dimensional  multi-phase  flow  of  agricultural  fire  producing  the
soot particles.  In  addition,  the model  describes  in  detail  the  mechanism  of the  soot  deposition  combined
with  the  developing  of the  electric  field.  The  model  equations  are  simultaneously  solved  using  an  iterative
finite-volume  numerical  technique  together  with  the  indirect  boundary  element  and  charge  simulation
methods.  The  model  validity  and  accuracy  are  verified  through  the discussion  of  the  results  for  a repre-
sentative  case  study  of  a 15  kV  cap-and-pin  insulator  string.  The  discussion  includes  a comparison  of the
present  numerical  predictions  for characteristics  of  the  deposited  soot  layer,  electric  field  distribution,
and  characteristics  of  flashover  occurrence,  with  the  available  results  in  the  literature.

Crown Copyright ©  2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

High voltage transmission lines (HVTL) usually cross agricul-
tural fields in which accidental fires may  occur. Also, farmers
intentionally burn crop residues in such agricultural fields as a har-
vesting aid. The occurring agricultural fires result in environmental
impact represented by thermal and gaseous pollution accompanied
with the production of soot particles. The soot particles deposited
on the insulator surface of the high voltage transmission lines are
often reported to cause flashover and consequently, the outages
of these lines. In some tropical countries, the number of line out-
ages due to fires, whether intentional or accidental, can be up to
hundreds a year per line [1]. This leads to a great economic loss for
both the utility and users.

Accurate modeling of the flashover mechanism requires deep
understanding and appropriate formulation of the equations
governing the physical and chemical processes associated with
combustion, spread of fire, and deposition of fire-produced soot
particles. The presence of electric field of the energized transmis-
sion line affects the flow and deposition of soot particles as the solid
phase of the multi-phase flow of the fire products. The deposited
soot layer results in an increasing leakage current over the

∗ Corresponding author. Tel.: +20 88 2299037; fax: +20 88 332553.
E-mail address: emad.elzohri@yahoo.com (E.H. El-Zohri).

insulator surface which by turn leads to the flashover of high volt-
age insulators.

Most of the published works [2–6] on mathematical modeling
of combustion and fire spread were generally limited due to sim-
plifying assumptions which cannot be extended to many of the
real cases. Recently, the present authors developed a more real-
istic mathematical three-dimensional non-steady fire model [7] as
a preparatory stage of the present work.

The research works on topics related to fire spread investi-
gate models and measurements of turbulent gas–particle flow
and the soot particles deposition [8–10]. Current approaches
commonly used to simulate turbulent gas–particle flow in com-
putational fluid dynamics (CFD) are the Eulerian–Eulerian and
the Eulerian–Lagrangian models [11,12]. In the Eulerian–Eulerian
approach, both the gas and particle flows are treated as continu-
ous fluid flow and regarded as interacting with each other. In the
Eulerian–Lagrangian approach, the Eulerian equations of the gas
phase are solved and the Lagrangian equations of particle motion
are integrated by tracking individual particle through the flow field.
Tian [13] investigated the performance of the two gas–particle
models, and developed particle-wall collision models describing
the associated boundary conditions. Zhang and Chen [14] used a
modified Lagrangian method to predict particle deposition onto
indoor surfaces. Valentine and Smith [15] described a model cou-
pled with a particle cloud tracking technique for predicting particle
deposition in turbulent flow fields. Cohan [16] experimentally
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Nomenclature

a absorption coefficient the gas/soot mixture, m−1

A, B, C cosine directions of a vector
D� the effective diffusion coefficient of any transported

variable �
E magnitude of electric field strength, V m−1

fvs soot volume fraction
gi gravity vector, m s−2

h enthalpy of the gas mixture, J kg−1

�h  heat of reaction, J kg−1

I current, A
J irradiance, W m−2

k turbulent kinetic energy, m2 s−2

macc
p mass of accumulated soot particles, kg

p pressure of the gas mixture, Pa
Pr Prandtl number
Qi discrete charges, C
R resistance, �
R universal gas constant
Re Reynolds number
Sc Schmidt number
t time, s
T  temperature of the gas mixture, K
TSL temperature of soot layer, K
ui velocity vector of gas phase, m s−1

upi velocity vector of soot particles, m s−1

Vp electric potential at any point p, V
xj x, y, z Cartesian coordinates in tensor notation
Y mass fraction

Greek symbols
ıSL soot layer thickness, m
ε turbulent kinetic energy dissipation rate
  surface charge density, C m−2

� viscosity
ω̇ reaction or process rate, kg m−3 s−1

� any transported variable
� density of the gas phase
�p density of the soot particles
	 Stephan–Boltzmann constant
	� turbulent Prandtl/Schmidt number for any trans-

ported variable �
	SL electric conductivity of soot layer, S m−1


 time constant
� incident angle of soot particles

Subscripts and superscripts
 ̨ gas species (  ̨ = CO, CO2, O2, H2O and N2)

∞ free stream value
L leakage path length, m
n normal component
p soot particles
� any transported variable
t tangential component
SL soot layer

validated a more specific model for the soot deposition in fire
dynamics simulator (FDS). Important factors in soot deposition
modeling are the particle deposition velocity and soot material
properties. These factors can be determined using measurements,
models, and properties in different published works [8,17,18].

Numerous works have been devoted to understand the
phenomena leading to flashover of polluted insulators in order to

elaborate a model allowing one to predict accurately the critical
flashover voltage. A common limitation for most proposed models
[19–23] is the simplified static representation of propagating arc in
series with the resistance of the polluted layer. Proposed models in
the last three decades individually considered various parameters
such as arc dynamics [24–28],  the chemical nature of the pollut-
ants [29], and multiple arcs [30]. The discussed published works
are valuable as a first simple approach for the separate topics (fire
model, soot deposition, and flashover mechanism) involved in the
real complex case of fire-induced flashover.

The aim of the present work is to formulate and solve a non-
steady three-dimensional mathematical integrated model for the
flashover mechanism due to the deposition of fire-produced soot
particles on high voltage insulators. This model accurately simu-
lates the coupled real events of the multi-phase flow produced
by agricultural fires occurring beneath a high voltage transmis-
sion line. Also, the model introduces a detailed treatment of soot
particles deposition on the insulator string units with a precisely
described geometry. The features of this geometry are key factors
in flow and deposition of soot particles, electric field distribution,
and consequently, flashover criterion. The model equations are
simultaneously solved using an iterative finite-volume numerical
technique together with charge simulation and indirect bound-
ary element methods for calculating the electric field distribution.
Model numerical predictions are presented and discussed for a
representative case study to check the model validity and accu-
racy. These predictions include characteristics of the deposited soot
layer, electric field distribution, and characteristics of flashover
occurrence.

2. Mathematical formulation

The present mathematical model analyzes the transport
phenomena including fire products leading to the flashover, speci-
fies the conditions for the agricultural fire model, and describes the
transmission line insulator boundary and the associated processes
occurring at this boundary. The model includes the basic system
of differential and integral equations that govern the transport
phenomena, with corresponding initial and boundary conditions.
The model equations are simultaneously solved using an itera-
tive finite-volume numerical technique. The following sub-sections
describe the details of the present mathematical model.

2.1. Theoretical model and basic assumptions

Fig. 1 shows the important features describing the theoreti-
cal model including the agricultural fire model and the insulator
string model. The figure shows the coordinate system, dimensions,
and the associated outer boundaries of the whole computational
domain. A wind-driven fire propagates in the agricultural fuel bed
of a depth ıM, width WM, and length LM forming a fire model with
a flame of a height HM. The wind flow is in the x-direction with a
vertical velocity distribution as shown in Fig. 1. The dimensions of
the whole computational domain are mainly expressed in terms of
those for the conceptual structure representing the agricultural fire
model. These selected dimensions are large enough to agree with
the practical considerations of computational fluid dynamics (CFD)
for wind environment around structures [31]. The insulator string
consisting of N identical rotationally symmetric units is stressed by
a system voltage Vsystem at a height Hst with respect to the ground
plane. The vertical axis of the insulator string is located in the sym-
metry plane of the whole computational domain, at a horizontal
length Lst from the fire model. Usually, the height HM of the occur-
ring fire beneath the transmission line is less than the height Hst

with enough distance resulting in small values of the electric field
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Fig. 1. General features and dimensions of the computational domain including the agricultural fire model and the insulator string of the transmission line.

at vertical levels down to HM. The following basic assumptions are
considered in the present mathematical formulation.

(1) Added to the stated wind direction and location of the insulator
string axis, the agricultural fuel bed usually has uniform struc-
ture and properties. Accordingly, the spatial variations of the
flow properties are considered identical around the symmetry
plane of the whole computational domain.

(2) The effect of the electric field can be neglected in the space
down to the flame height HM. Accordingly, in this space the
soot particles are simply included in the gas phase of the multi-
phase medium of the fire model. On the other hand, the soot
particles are treated as a separate solid phase in the other space
of the whole computational domain where the electric field is
effective.

(3) The continuity and momentum equations are only considered
for the solid phase of the soot particles which are in thermal
equilibrium with the associated gas phase. In addition, the dif-
fusion and the turbulence terms in the momentum equations
are neglected due to the small density of the solid phase com-
pared with the gas phase density.

(4) No chemical reactions are considered in the space of the whole
computational domain above the flame height either for the
carrier gas phase or for the dispersed solid phase of the soot
particles.

(5) The effects of any objects (e.g. buildings, towers, trees. . .), exist-
ing within the whole computational domain, are neglected and
attention is focused only on the insulator string.

The statement of assumption (1) suggests that only half of the
whole computational domain is sufficient to describe precisely the
spatial variations of the whole flow, with less computations. More-
over, for easy but accurate treatment of the whole flow, half of
the computational domain can be divided, according to assump-
tion (2), into two distinct Sub-domains as shown in Fig. 2. The two
Sub-domains have the common outer boundaries of inflow, outflow
1, outflow 2, and the symmetry plane. Besides these boundaries,
the Sub-domain I is bounded in vertical direction by the ground
boundary and the imaginary interface plane, while the Sub-domain
II is bounded by the imaginary interface plane and the outflow
3 boundary. The Sub-domain I concerns with the agricultural fire
model representing the multi-phase flow whose solid phase is the

stagnant agricultural solid fuel particles. On the other hand, the
Sub-domain II concerns with the multi-phase flow of the fire prod-
ucts whose solid phase is the soot particles.

2.2. Treatment of the agricultural fire model in Sub-domain I

The fire model in the present study is represented by a multi-
phase medium, including multi-class agricultural solid fuel. The
model assumptions, basic equations, and associated initial and
boundary conditions are formulated and presented in detail by the
present authors [7].  In this model, the degradation of the solid
fuel is controlled by dehydration, pyrolysis, and char oxidation
processes whose reaction rates are expressed by Arrhenius-type
equations. The degradation of the solid fuel is mainly character-
ized by the time variation of water content, dry fuel, char, and
ash mass fractions. The evolution of these mass fractions besides
the fuel volume fraction, density, and temperature are all gov-
erned by a set of seven first-order ordinary differential equations
[7].

The flow behavior of the gas phase in the present fire model is
described by the turbulence modeled balance equations for mass,
momentum, energy, and chemical species mass fraction. The gas
phase is a mixture resulting from the thermal degradation of the
solid phase matrix and the combustion reactions. These fire pro-
cesses, normally contribute soot and major five gaseous species
namely, CO, CO2, O2, H2O, and N2. Therefore, mass fractions of these
five gases beside the soot volume fraction have been conserved. An
elliptic partial differential equation in the generic form [4–6] is used
to express the balances of various flow properties for non-steady
three-dimensional gas flow of the fire model.

2.3. Basic equations for the multi-phase flow of the fire products
in Sub-domain II

2.3.1. Gas phase
The flow behavior of the gas phase in Sub-domain II is treated in

a manner similar to that of the fire model in Sub-domain I. The gas
phase in Sub-domain II is considered as a mixture of the same five
combustion gases CO, CO2, O2, H2O, and N2. The soot particles are
considered as the solid phase of Sub-domain II whose flow char-
acteristics are discussed in the next sub-section. The general form
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Fig. 2. Main differences between the computational sub-domains.

of the balance equations for the gas phase can be expressed by the
following elliptic partial differential equation:

∂(��)
∂t

+ ∂(�uj�)
∂xj

= ∂

∂xj

(
D�
∂�

∂xj

)
+ S�, (1)

where � is the generic form of the transport fluid property hav-
ing a corresponding diffusive exchange coefficient D� and a source
term S� . The representation of the generic fluid property � and the
associated expressions for D� and S� are summarized in Table 1.

The following equation of state is used to calculate the pressure
p of the gas phase assuming it a mixture of ideal gases.

p = �RT
∑
˛

Y˛
W˛

, (2)

where � is the gas phase density, R is the universal gas constant, T
is the gas temperature, Y˛ is the mass fraction of gas species, and
W˛ is the molecular weight of gas species.

The last term in the source expression for momentum equations
in Table 1 represents the momentum exchange between the gas
phase and the solid phase with velocity components upi . The time
constant 
 in this term is calculated as


 = 18�

�pd2
soot

, (3)

where � is the gas viscosity, �p is the solid phase density, and dsoot is
the diameter of the mono-sized soot particle, assumed to be 1 �m.

The specific enthalpy of the gas phase h is a function of the mass
fractions Y˛ and the gas temperature T, given by

h =
∑
˛

Y˛

[
�h0

˛ +
∫ T

0

C˛(T)dT

]
. (4)

The irradiance J appearing in the energy (specific enthalpy)
equation is calculated by integrating the thermal radiation intensity
in overall directions. This intensity is obtained from the solution of
the three-dimensional radiative transfer equation [7].

Expressions for turbulent viscosity �t and the turbulence func-
tions Pk, Wk, and R are found elsewhere [6].

The constants in Table 1 have the following values.

Cε1 = 1.42, Cε2 = 1.68, Cε3 = 1.5, 	h = 	fvs = 	Y˛ = 0.7,

	k = 0.7179, 	ε = 1.3, Sc = Pr = 0.71.

2.3.2. Solid phase
The dispersed mono-sized soot particles representing the solid

phase can be treated as a quasi-fluid continuum [13] of a den-
sity �p, flowing with velocity components upi . The flow behavior
of this solid phase is controlled by the following continuity and
momentum equations, in tensor notation.

∂�p
∂t

+
∂(�pupj )

∂xj
= 0 (5)

∂(�pupi )
∂t

+
∂(�pupjupi )

∂xj
= �pgi + 
�p(ui − upi ) + ε0

∂E2

∂xi
(6)

The right hand side of Eq. (6) consists of three source terms
representing the gravitational force, the drag force (momentum
exchange), and the electrophoretic force with E is the magnitude
of electric field strength and ε0 is the dielectric constant of air.

2.4. Initial, outer boundary, and continuity conditions for
Sub-domain II

2.4.1. Initial conditions
The initial conditions in Sub-domain II represent the values of

the flow properties for both gas and solid phases, just at the begin-
ning instant of the fire (at t = 0) when the flow properties are those
for the free stream. Thus, the initial conditions can be summarized
as in Table 2.

2.4.2. Outer boundary and continuity conditions
In the present work, the outer boundaries are planes (Fig. 1)

enclosing the whole computational domain. The inner boundary
is represented by the surfaces of the insulator string units (Fig. 2).
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Table  1
Summary of the conservation equations, Eq. (1), for gas phase expressed in the generic form.

Fluid flow property � D� S�
Mass 1 0 0

Momentum ui � + �t

− ∂p
∂xi

+ �gi −
2
3
∂

∂xj

[(
�eff

∂uk
∂xk

− �k

)
ıij

]
+ ∂

∂xj

(
�eff

∂uj
∂xi

)
− 
�p(ui − upi )

Specific enthalpy h �
Pr + �t

	h
ag(J − 4	T4)

Kinetic energy of turbulence k � + �t
	k

Pk + Wk − �ε

Rate  of dissipation of turbulent energy ε � + �t
	ε

(Cε1 − R) εk Pk − Cε2� ε
2

k
+ Cε3 εkWk

Species mass fraction Y˛
�
Sc + �t

	Y˛
0

Table 2
Initial conditions of flow properties in Sub-domain II.

Gas phase Solid phase

u = v = w = 0, T = T∞, YCO = YCO,∞, YCO2 = YCO2,∞,
YO2 = YO2,∞, YH2O = YH2O,∞, p = p∞,
YN2 = 1 − (YCO,∞ + YCO2,∞ + YO2,∞ + YH2O,∞),
ε  = 10−6 m2 s−3, k = 10−6 m2 s−2.

The initial value of the gas density (�) is
deduced using the equation of state of the
ideal gas.

�p = 0, up = vp =
wp = 0.

In this sub-section the outer boundary conditions and the com-
mon  conditions at the interface plane (continuity conditions) are
discussed and formulated. The description and formulation of the
inner boundary conditions are discussed in detail in Section 2.5.
The conditions at the five outer planes bounding the Sub-domain
II can be formulated in the following manner as shown in Table 3.
The common continuity conditions at the interface plane are for-
mulated and stated in Table 4.

2.5. Inner boundary conditions at the insulator string

This sub-section is devoted for satisfactory modeling of the
insulator boundary geometry, as well as thorough description of
various processes occurring at this boundary. The detailed discus-
sion on the insulator boundary enables accurate simulation of the
corresponding boundary conditions affecting the multi-phase flow

Table 3
Outer boundary conditions of flow properties in Sub-domain II.

Boundary name and
geometrya

Boundary conditions

Symmetry:
0 ≤ x ≤ LC, y = 0,
HM < z ≤ HC

v = 0, vp = 0,
∂�

∂y
= 0 for � /= v,

∂up
∂y

= ∂wp
∂y

= 0,
∂�p
∂y

= 0

Outflow 1:
0 ≤ x ≤ LC, y =
WC
2 , HM < z ≤ HC

p = p∞,
∂�

∂y
= 0 for all �,

∂up
∂y

= ∂vp
∂y

= ∂wp
∂y

= 0,
∂�p
∂y

= 0

Outflow 2:
x = LC, 0 ≤ y ≤
WC
2 , HM < z ≤ HC

p = p∞,
∂�

∂x
= 0 for all �,

∂up
∂x

= ∂vp
∂x

= ∂wp
∂x

= 0,
∂�p
∂x

= 0

Outflow 3:
0 ≤ x ≤ LC, 0 ≤ y ≤
WC
2 , z = HC

p = p∞,
∂�

∂z
= 0 for all �,

∂up
∂z

= ∂vp
∂z

= ∂wp
∂z

= 0,
∂�p
∂z

= 0

Inflow:
x  = 0, 0 ≤ y ≤
WC
2 , HM < z ≤ HC

v = w = 0, Y˛ = Y˛,∞, T = T∞, p = p∞,
up = vp = wp = 0, �p = 0,
Equations of reference [6] are used to calculate the
air inflow properties; u, k, and ε in terms of surface
roughness z0 and wind velocity Uw at a given
height Hw .

a LC = 5HM + LM + Lst + 15HM, WC = 5HM + WM + 5HM, HC = HM + 5HM.

inside Sub-domain II. The discussion also focuses on the analysis
towards the main target of the present work, namely, deposition
of soot particles (solid phase) and the associated flashover mecha-
nism.

2.5.1. Description of the insulator geometry
The insulator string consists of N identical units connected to

each other as shown in Figs. 1 and 2 whose surfaces represent
the insulator boundary. Consequently, a representative geometric
description of the surface for one unit is demonstrated. Fig. 3 shows
the main features of the geometry for the unit model. The unit can
be approximated by an oblate spheroid (Fig. 3a). The spheroid is
located at a center O’ (xu, yu, zu) as shown in Fig. 3b. The spheroid
surface is obtained by rotating the half of an ellipse about its minor
axis (z’). The angle of rotation  (0–2�) and the angle of ellipse
generation  ̌ (−�/2 to �/2) are the surface description parameters
(Fig. 3b). The half-lengths a and b of the major and minor axes,
respectively, are obtained from the real dimensions of the insula-
tor unit. The formulation of the boundary conditions at the unit
surface requires the mathematical description of the tangent plane
and the outward normal vector with ordinate � (Appendix A) at a
general point P (x’, y’, z’) on the surface as shown in Fig. 3a.

2.5.2. Boundary conditions for the gas phase at the insulator unit
surface

Considering the gas flow, the insulator represents a bound-
ary of curved solid non-porous wall. At this boundary, the no-slip
condition for the velocity components and turbulence applies. An
appropriate thermal condition at the insulator surface is that the
gas temperature T equals the soot layer temperature TSL. The value
of TSL is determined later in Section 2.7. The impermeability condi-
tion is applied for the mass fractions of the gas phase species. Thus,
the gas phase boundary conditions can be written as

u = v = w = 0, k = 0, ε = 0, p = p∞, T = TSL,
∂Y˛
∂�

= 0 (7)

2.5.3. Boundary conditions for the solid phase at the insulator
unit surface

The conditions of the solid phase particles at the insulator
surface can be identified through inter-relations for the particles
velocity vector and density. The application of this concept deals

Table 4
Common continuity conditions for the two sub-domains at the interface plane(

0 ≤ x ≤ LC, 0 ≤ y ≤ WC
2 , z = HM

)
.

Solid phase Gas phase

(up)II = (u)I, (vp)II = (v)I,
(wp)II = (w)I, (�p)II = �soot(fvs)I

(u)II = (u)I, (v)II = (v)I, (w)II = (w)I,
(�)II = (�)I, (Y˛)II = (Y˛)I, (T)II = (T)I

Note. The subscript I refers to Sub-domain I, the subscript II refers to Sub-domain II,
the soot volume fraction fvs is a flow property for sub-domain I, and �soot is the soot
density.
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Fig. 3. Main features of the geometric model for the insulator unit: (a) the spheroid surface of the model and (b) surface parameters and dimensions.

with the choice of a control space adjacent to the specified point P
on the insulator surface. Fig. 4 shows such a control space which
is bounded by the tangent plane at the point P and an imaginary
parallel plane at a height h (much larger than the thickness of the
deposited soot layer). The soot particles arriving at the insulator
surface with incident velocity vector �Vw and density �p,w suffer
rebounding with restitution coefficients associated with the inward
normal component upn,w and the tangential component upt,w . Both
incident and reflected velocities constitute the flow velocity field
in the control space adjacent to the point P. Also, mass of the soot
particles is conserved for this control space.

Fig. 4. The control space with the soot particle velocity vector components.

Neglecting the effect of soot deposition on mass conservation,
the boundary conditions can be identified by the following generic
equation [13]:

a�w + b
∂�

∂�

∣∣∣∣
w

= c � =
[
upn, upt , �p

]
(8)

The associated coefficients a, b, and c are expressed in terms of
restitution coefficients en and et. These are functions of the incident
angle � = tan−1

(
upt,w/u

p
n,w

)
[13], and are given by

en = 0.993 − 1.76� + 1.56�2 − 0.49�3 (9)

and

et = 0.988 − 1.66� + 2.11�2 − 0.67�3 (10)

The inward normal velocity incident at the insulator surface upn,w
must exceed a value known as capture velocity, uc for the soot par-
ticles to rebound from the insulator surface. So, for upn,w ≤ uc both
of the restitution coefficients en and et are equal to zero. The capture
velocity uc depends on many factors (e.g. particle size and material,
insulator surface conditions. . .), and is to be determined experi-
mentally. Based on the available data in the literature, a reasonable
value of uc = 0.001 m s−1 for soot particles is adopted [8–10]. The
differential form of the generic equation (Eq. (8)) is transformed
to a linear algebraic equation in the unknown �w. This is achieved

by substituting for the derivative ∂�
∂�

∣∣∣
w

with its forward numerical

formula in terms of the value of � at � = h. The algebraic form of
the generic equation handles the velocity components upn and upt .
However, the coupling of the inner boundary conditions is through
the Cartesian components upi used in the flow momentum equation
(Eq. (6)). Thus, a two-way transformation between the two  systems
of velocity components must be performed (Appendix B).

2.6. Evaluation of the deposited soot layer on the insulator string

The fire-induced pollution is sensitive to the fire model param-
eters. These parameters include the horizontal length between
insulator string and fire model (Lst), length of fire model (LM), width
of fire model (WM), height of fire model (HM), depth of fuel bed
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Fig. 5. The differential control volume in the soot layer and the thermal energy rates.

(ıM), wind velocity (Uw), and initial fuel moisture content (FMC).
As the dimensions of the burnt field configuration increase, the fire
intensity increases and consequently, the produced-soot so that
the chance for high rate of deposition increases. As the wind veloc-
ity increases, the momentum of soot particles increases so that
the chance for high rate of deposition decreases. Also, as the ini-
tial fuel moisture content increases, the fire intensity decreases so
that the produced-soot decreases and consequently, low deposition
rate.

The soot particles with normal velocities upn,w less than or equal
to the capture velocity uc are liable to deposit on the insulator
surface. Therefore, the local instantaneous deposition flux of soot
particles (DF)p can be estimated by

(DF)p = �p,wu
p
n,w, upn,w ≤ uc (11)

The local instantaneous accumulated mass of deposited soot
particles per unit area macc

p is calculated as

macc
p =

t∫
0

(DF)p dt (12)

The local instantaneous soot-layer thickness ıSL on the insulator
surface is estimated as

ıSL = macc
p

�SL
, (13)

where the soot-layer density �SL = (1 − εv)�soot. The voidage ratio
εv for loose packing of soot particles can be taken as 0.45 and the
bulk density of the soot material �soot is taken to be 1800 kg m−3

[5].
The thermal inner boundary condition of the gas phase at the

insulator surface, T = TSL in Eq. (7),  requires accurate knowledge of
the local instantaneous soot-layer temperature TSL. The value of
TSL is a function of the soot-layer thickness ıSL and varies with time
and location on the insulator surface. The temperature distribution
function within the deposited soot layer can be obtained in the
following manner.

2.7. Temperature distribution within the deposited soot layer

Fig. 5 shows a differential control volume in the soot layer at a
general point P (x’, y’, z’) on the spheroid (insulator unit) surface.
The control volume has a height ıSL, a differential length dL, and a
differential width dS. The length L is the total length on the periph-
ery of the half-ellipses describing the profile of the insulator string
units measured from the lowest point. This length is referred as

the leakage path length. The length S is the length on a circle of
rotation. Expressions for the leakage path length L and the length
S on the surface of the insulator string are given in Appendix A in
terms of the surface description parameters  ̌ and . The differ-
ential control volume is exposed to different thermal energy rates
with its lower surface is assumed thermally insulated as shown in
Fig. 5. The thermal energy rates are classified as generation rate
qgen, heat transfer rates by conduction qL, qS, qL+dL, and qS+dS, and
heat transfer rate by convection qconv. The thermal energy genera-
tion is a result of the leakage current flowing through the soot-layer
along the above-mentioned leakage path. Expressions for the heat
transfer rates are derived using Fourier’s law for conduction and
Newton’s law of cooling for convection [32]. These thermal energy
rates are balanced with the rate of change of the stored energy in
the differential control volume.

Applying the first law of thermodynamics on the control vol-
ume of Fig. 5 and substituting for the different energy terms by
their expressions, the following two-dimensional non-steady dif-
ferential heat transfer equation for the soot layer temperature TSL
is obtained.

∂TSL

∂t
= DSL

[
1
ıSL

∂

∂L

(
ıSL
∂TSL

∂L

)
+ 1
ıSL

∂

∂S

(
ıSL
∂TSL

∂S

)
+
	SLE2

t,L

KSL
+ Kgas

ıSLtKSL

∂T

∂�

∣∣∣∣
w

]
,

where the thermal diffusity of the soot layer DSL = KSL/�SL · cSL, KSL
(=1 W m−1 K−1) [32] is the thermal conductivity of the soot layer,
cSL (=800 J kg−1 K−1) [32] is the specific heat of the soot layer, 	SL is
the local instantaneous electric conductivity of the soot layer, Et,L

is the tangential component of the electric field strength along the
leakage path, Kgas is the thermal conductivity of the gas mixture,

and ∂T
∂�

∣∣∣
w

is the gas temperature gradient in the outward normal

direction at the insulator surface.
The initial condition associated with Eq. (14) can be written as

the insulator string surface is initially at ambient temperature T∞.
The corresponding boundary conditions are based on two facts:
symmetry conditions (at  = 0 and  = �), and thermal insulation
conditions at connecting points between insulator string units (at

 ̌ = −�/2 and  ̌ = �/2).
The variation of the electric conductivity of the soot layer 	SL

with its temperature TSL is obtained by

	SL = 	SL∞
[1 + ˛SL (TSL − T∞)]

(15)

where 	SL∞ (=1500 S m−1) [32] is the electric conductivity of the
soot layer at T∞, ˛SL (=−0.0005 K−1) [32] is the temperature coeffi-
cient of the soot layer.

2.8. Electric field distribution

The presence of the deposited soot layer polluting the insulator
surface distorts the capacitive potential distribution and the elec-
tric field is no longer capacitive but may  be capacitive-resistive or
resistive, depending on the severity of the surface pollution. The
algorithm developed for calculating the electric capacitive-resistive
field distribution is based on the indirect Boundary Element Method
and the Charge Simulation Method. The insulator under investiga-
tion (Fig. 3) is surrounded by air and is stressed between a pair
of electrodes (cap and pin). The top electrode is taken as grounded
while the bottom electrode is stressed by the applied voltage. Since
the insulator-electrodes assembly is a rotationally symmetric con-
figuration, ring charges [33] are employed for simulation. Each
electrode is simulated by a set of Ne ring charges placed within
the electrode. The insulator–air interface is simulated by two sets
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Fig. 6. Spheroidal element.

of 2Nd ring charges, one set placed in insulator and other set in air.
Images of the fictitious ring charges with respect to the ground
plane are also considered in the present algorithm. For power
frequency capacitive-resistive field calculation, complex fictitious
charges varying sinusoidally with time are employed to give the
instantaneous field distribution [34,35]. The electrodes and insu-
lator boundaries are discretized into several boundary elements
and a suitable polynomial is introduced for the equivalent surface
charges along the discrete boundary elements. Then the electric
field in the region of interest is considered to be caused by the equiv-
alent surface charges along the boundary elements. The potential
�Vp,d at a space point p with ordinate �r′ due to the surface charges
within a finite element of area �A  (Fig. 6) is expressed by the Fred-
holm integral equation of the first kind as

�Vp,d = 1
4�ε

∫
�A

 (ˇ, )∣∣ �r′ − �r
∣∣ dA, (16)

where dA is the differential area centered at a surface point P (ˇ, )
with space ordinate �r,   (ˇ, ) is the corresponding surface charge
density, and ε is the dielectric constant. The surface charge density
 (ˇ, ) can be expressed as a simple 4terms-polynomial [36]. Sub-
stituting for  (ˇ, ), �r′, and dA in terms of  ̌ and , Eq. (16) can be
re-written as

�Vp,d = 1
4�ε

∫ ˇ2

ˇ1

∫ 2

1

(k0 + k1  ̌ + k2 + k3ˇ)(a cos ˇ
√
a2 sin2

 ̌ + b2 cos2
 ̌ d  ̌ d)√

(xu + a cos  ̌ cos  − x)2 + (yu + a cos  ̌ sin  − y)2 + (zu + b sin  ̌ − z)2
(17)

The four coefficients of this polynomial (k0, k1, k2, and k3) can be
given in terms of the coordinates (ˇ1, ˇ2, 1, and 2) and the charge
densities ( 1,  2,  3, and  4) of the four vertices of the element
�A (Fig. 6). Integrating and surveying all elements of the insulator
string, one can get the potential Vp,d at the point p due to all surface
charge densities as a summation over 2Nd unknown surface charge
densities  i, i = 1, 2, . . .,  2Nd each multiplied by a corresponding
potential coefficient function. A similar summation can be consid-
ered for the contribution of the potential Vp,e at the point p due to
2Ne unknown discrete charges Qi, i = 1, 2, . . .,  2Ne simulating the
electrodes. Thus the total potential Vp can be expressed as

Vp = Vp,e + Vp,d =
2Ne∑
i=1

Pe,i · Qi +
2Nd∑
i=1

Pd,i ·  i, (18)

where Pe,i and Pd,i are the potential coefficient functions due to dis-
crete charges simulating the electrodes and due to surface charge
densities on the insulator surface, respectively.

The electric field strength at the point p can be obtained as
�Ep = − �∇Vp, and the tangential component along the leakage path
is given by Et,L = ∂Vp/∂L.

The unknown discrete charges Qi and surface charge densities  i
in Eq. (18) are chosen such that they satisfy the following boundary
conditions.

Dirichlet’s condition on the electrode surface is

Vp = Ve, (19)

where Ve is the known potential on the HV electrode and the
grounded electrode with respective values of system voltage Vsystem

and zero.
Potential continuity condition on the insulator–air interface

(insulator surface) is

Vp|ε=εinsulator = Vp|ε=ε0 (20)

Continuity condition of the normal component of the electric
flux density Dn on the insulator surface is

Dn|ε=εinsulator − Dn|ε=ε0 =  true, (21)

where  true is the true surface charge density. The numerical value
of the true surface charge density  true,ij at a surface point p, node
i, j, is calculated in terms of the potentials at the specified node and
the surrounding nodes as

 true,ij = 1
iω

1
�Aij

[
(Vp)i−1,j − (Vp)i,j

Ri
−

(Vp)i,j − (Vp)i+1,j

Ri+1

+
(Vp)i,j−1 − (Vp)i,j

Rj
−

(Vp)i,j − (Vp)i,j+1

Rj+1

]
, (22)

where i = √−1, ω is the angular frequency, and �Aij = (�L · �S)ij is
the element surface area at the node i, j.

The resistances Ri, Ri+1,Rj, and Rj+1 in Eq. (22) are calculated in
terms of the local surface resistance RSL at the different nodes, and
the associated differences of �L  and �S.  The local surface resistance
RSL is the reciprocal of the product of the local soot layer thickness
ıSL and conductivity 	SL.

2.9. Flashover criterion

The leakage current increases due to the accumulated deposi-
tion of the soot layer. This increase in the leakage current continues

to the extent causing start of partial arcs (discharges) along the
leakage path. With further increase in the leakage current, these
partial arcs elongate and join to cause flashover occurrence. This
requires a condition that the arc length bridges as much as 67% of
the total leakage path length [37].

The start of discharge at a specified point on the insulator surface
is controlled by the arc propagation criterion (Et,L > Earc,L), where
the arc electric field strength along the leakage path Earc,L can be
expressed in terms of the leakage current IL by

Earc,L = AI−nL (23)

For air environment, the arc constants take the values A = 63 and
n = 0.76 [28]. The leakage current IL can be estimated as the average
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Fig. 7. Time evolution of the deposited soot layer thickness along the leakage path length for different locations on the insulator string.

Fig. 8. Time evolution of the deposited soot layer temperature along the leakage path length for different locations on the insulator string.
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Fig. 9. Time evolution for the surface resistance of the deposited soot layer along the leakage path length for different locations on the insulator string.

of its local numerical values I(Li) (passing through finite circular
rings along the leakage path), calculated by

I(Li) = 2
m∑
j=1

(
	SLEt,LıSL�S

)
ij

(24)

where m is the number of the jth nodes over the ith finite ring and
(�S)ij is the difference length on the corresponding half ring.

2.10. Numerical solution

The differential equations of the present mathematical model
are simultaneously solved using an iterative finite-volume

Fig. 10. Effect of varying the system voltage on the deposition of the soot layer.

numerical technique. The set of the first-order ordinary differen-
tial equations for the solid phase in the fire model are solved using
the fourth-order Runge–Kutta method. The gas phase equations for
the fire model in Sub-domain I and the gas phase equations as well
as the solid phase equations in Sub-domain II are all discretized
on a staggered, nonuniform cartesian three-dimensional grid of
finite cells. A second-order backward Euler scheme is used for time
integration. A second-order central difference scheme is used to
approximate the diffusion terms. The resulting discretized equa-
tions are a system of linear algebraic equations which are solved
iteratively using the line-by-line tridiagonal matrix algorithm [38].
In order to accelerate convergence, all the gas variables are under-
relaxed using inertial relaxation. A discrete ordinate method is used
as a part of the numerical solution for the radiative transfer equa-
tion [39]. The charge simulation method and the indirect boundary
element method are used for the numerical calculation of the elec-
tric field distribution as formulated in detail in Section 2.8. Usually,
it is needed to predict numerical results for a specific case within
assigned time. The running of calculations is completed unless the
condition of flashover occurrence is satisfied before this time.

3. Results and discussion

The present mathematical model was simulated by a computer
program which has been developed and processed to test the model
validity and accuracy. A representative case study of single-phase
high voltage transmission line with a single insulator string is
selected to perform this task. The transmission line crosses an agri-
cultural fuel bed of natural tall grassland in which a wind-driven
fire propagates. The main input data relevant to the transmis-
sion line and the agricultural fire model are listed in Table 5. The
selected values of the parameters in Table 5 for simulations are
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Fig. 11. Time evolution for potential along the leakage path length for different locations on the insulator string.

Fig. 12. Time evolution for electric field strength along the leakage path length for different locations on the insulator string.
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Table  5
Main input data for the transmission line and the agricultural fire model.

Item Value

System voltage (Vsystem), kV 15
Number of insulator string units (N) 6
Leakage path length (Lu) of an insulator string unit, mm 310
Maximum diameter (2a) of an insulator string unit, mm 252
Height (2b) of an insulator string unit, mm 146
Horizontal length between insulator string and fire model (Lst), m 1
Height of insulator string above the ground (Hst), m 9
Length of fire model (LM), m 100
Width of fire model (WM), m 40
Height of fire model (HM), m 8
Fuel  bed depth (ıM), m 0.8
Wind velocity (Uw), m s−1 4
Fuel  Moisture Content (FMC) 0.4

encountered for common practical conditions of agricultural fires
and high voltage transmission lines. The height HM represents the
maximum flame height encountered for the representative case
study presented before [7].  The parameters for the transmission
line are selected near enough to the fire model dimensions in order
to facilitate the chance for the soot particles resulting from the
fire to deposit on the insulators of the transmission line. The high
value of the initial fuel moisture content, 0.4, is selected to rep-
resent the real case of plants for agricultural fields in Egypt. The
data listed in Table 5 are the same for all numerical results pre-
dicted by the present model, except otherwise stated. Useful data
of the fuel bed properties and the associated fire conditions are
presented before [7].  A satisfactory numerical solution is obtained
using a grid of 1044 × 360 × 348 cells. The cells in the fuel bed
region are sub-divided into a refined mesh of 200 × 30 × 80 small
cells. The cells adjacent to the insulator boundary are sub-divided
into a refined mesh of 186 × 6 × 1 small cells. In addition, a fine
step of 0.025 s for time domain was taken to accelerate conver-
gence. The convergence of the iterations for each cell is considered
to be reached when the criterion

∣∣˚n+1 − ˚n
∣∣/ ∣∣˚n∣∣ ≤ 10−4 is

satisfied for a flow property ˚.  The free stream properties are
T∞ = 300 K, p∞ = 101, 325 Pa, YCO,∞ = 0, YCO2,∞ = 0, YO2,∞ = 0.231,
and YH2O,∞ = 0.006. The following discussion is made on some
selected model predictions which are strongly related to the soot
deposition on the insulator surface and the resulting flashover char-
acteristics.

3.1. Characteristics of the deposited soot layer

Figs. 7–10 show the results for the distribution and time evo-
lution of the main properties (thickness, temperature, surface

Fig. 13. Time evolution for the variation of the local leakage current along the
leakage path.

resistance) of the deposited soot layer as well as the effect of system
voltage on the soot layer thickness. Hereafter, a property distribu-
tion is represented by the continuous variation along the whole
leakage path length for representative path lengths with A:  = 180◦

(front), B:  = 120◦, C:  = 60◦, and D:  = 0◦ (rear).
Fig. 7 shows the time evolution for the distribution of the

deposited soot layer thickness. For all time instants, the soot layer
thickness has large values at front leakage paths and then decreases
towards the rear location. This is expected due to the combined
effects of the insulator string geometry and the dominant velocity
direction of the incident soot particles. For first instants (t = 60 s)
after the beginning of the fire (t = 0), a non-uniformity of the soot
layer thickness is noticeable from its variation along the leakage
path length. The soot layer thickness approaches nearly constant
values for an instant (t = 597 s) at which the flashover occurs. The
maximum value of the soot layer thickness at which the flashover
occurs is about 20 �m.

Fig. 8 shows the time evolution for the distribution of the
deposited soot layer temperature. Same range of temperature rise
above the ambient (up to 25 K) has been reported for normally pol-
luted insulators in the literature [40]. In [40] the temperature rise
was 15 K above the ambient. A clear variation of the soot layer tem-
perature along the leakage path is observed even at the instant of
flashover (t = 597 s) where the soot layer thickness is nearly con-
stant. This variation is mainly due to the variation of the tangential
component of the electric field strength, Et,L as will be demonstrated
in Fig. 14.  The value of Et,L is a dominant factor in the thermal
energy generation term controlling the rise of the soot layer tem-
perature. Higher values of soot-layer temperature rise (up to 60 K)
are expected with fires occurring at lower wind velocities and in
hotter ambient.

Fig. 9 shows the time evolution for the distribution of the
deposited soot-layer surface resistance. The figure indicates that
the average values of the soot layer resistance (10–100 �)  are
much smaller than those values presented in published works
(104–1011�)  for normally polluted insulators [41]. This is mainly
due to the high value of the electric conductivity for the soot
material (1500 S m−1 at 300 K) compared with insulator pollut-
ing materials used by other researchers having the order of
10–50 �S m−1. The nearly constant value of the soot-layer surface
resistance along the leakage path at the time of flashover is mainly
due to the nearly constant value of the soot layer thickness. The
effect of the variation in the electric conductivity of the soot layer
caused by the temperature rise is negligible due to small values of
temperature rise shown in Fig. 8. Accordingly, the variation of the
soot-layer surface resistance over the different leakage paths can be
understood in the view of the variation of the soot layer thickness
as shown in Fig. 7.

Fig. 10 shows the effect of varying the system voltage on the
deposition of the soot layer at the beginning point of leakage
path length (L = 0) on the front location ( = 180◦). The indicated
values of the system voltage represent the common rated val-
ues for transmission system voltages. The rate of soot deposition
decreases and consequently, the accumulated soot layer thickness
decreases as the system voltage increases. This can be explained
as follows. The electric field possesses large strength values with
higher system voltages. The source of momentum (Eq. (6)) in
the present model accelerates most of the soot particles inci-
dent to the insulator surface resulting in less deposition rate. The
figure shows that flashover occurs earlier with small soot layer
thicknesses associated with higher system voltages. This is due
to mainly the significant increase in the tangential component
of the electric field strength and by turn, the leakage current
increase. The results for lower system voltage of 10 kV show no
flashover occurrence up to an assigned time of 600 s (duration of fire
propagation).
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Fig. 14. Time evolution for tangential and arc electric field strength along the leakage path length for different locations on the insulator string.

3.2. Electric field distribution over the insulator surface

Figs. 11 and 12 show the results for the distribution and time
evolution of the potential and the electric field strength over
the insulator surface, respectively. The initial distributions shown
(t = 0) are typical for purely capacitive electric field over clean
insulators commonly used with high voltage transmission lines.
The distributions change with time from purely capacitive to
capacitive-resistive as the surface resistance decreases gradually
with the accumulation of the deposited soot layer (Fig. 9). The elec-
tric field becomes almost resistive along the leakage path when
and where the flashover occurs (t = 597 s and  = 180◦). The features
shown in Figs. 11 and 12 of the resistive electric field are under-
stood from the nearly linear distribution of the potential and the
nearly constant value of the electric field strength along the leakage
path. Similar results for artificially polluted insulators have been
reported [40,41].  In [40] the value of system voltage was  15 kV as
the value in this paper and the same variation is remarked. In [41]
the values of potential and electric field were in per unit and the
same variation is remarked.

3.3. Characteristics for flashover occurrence

Fig. 13 shows small fluctuations in the calculated local leakage
current along the leakage path at different time instants. These
fluctuations probably are due to numerical errors in calculating
the local values of the leakage current. Therefore, it was  reason-
able to consider the accurate value of the leakage current as the
average of its local values (Eq. (24)). The figure also shows that the
leakage current increases with time till a limiting value of 2.15 A
at which flashover occurs. Same range of leakage current values
for flashover occurrence (0.5–3 A) has been reported even with

normally polluted insulators with pollutant resistance as high as
0.014–2 M� [42]. In [42], the leakage current was  2.55 A when
the system voltage 33 kV. For those insulators, large electric field
strengths are expected to exist with the associated large system
voltages and small leakage path lengths. The resulting large values
of the electric field strength combined with the large normal
pollutant resistances nearly generate a situation similar to the
present severely polluting case of fire-produced soot (<34 �).

Fig. 14 shows the time evolution for the distribution of the
tangential component of the electric field strength Et,L and the
associated values of the arc electric field strength Earc. The ear-
lier distributions of the tangential component of the electric field
strength Et,L exhibit significant non-uniformity with maxima and
minima. Then with time, the distributions become nearly uniform
with increasing values. The value of Earc decreases with time till
it is exceeded by the value of Et,L along 67% of the total leakage
path length at the front location ( = 180◦), causing the flashover to
occur. This condition is not satisfied at other locations where par-
tial arcs occur without flashover ( = 120◦ and 60◦) or partial arcs
do not occur at rear locations ( = 0◦). The numerical values of the
tangential component of the electric field strength Et,L are compa-
rable with the values reported before [40,41].  In [40] the values of
tangential component of electric field were in the range from 50 to
300 kV m−1 for the same system voltage of 15 kV but the polluting
material was other than soot. In [41] the values of tangential com-
ponent of electric field were in per unit and the same variation is
remarked.

4. Conclusions and future work

The present study formulates and solves a non-steady three-
dimensional mathematical integrated model for flashover due to
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the deposition of fire-produced soot particles on high voltage insu-
lators. The model accurately simulates the simultaneous real events
involved in the multi-phase flow of fire products as well as the
mechanism of soot deposition leading to the flashover. Model
numerical predictions for a representative case study were pre-
sented and discussed to check the model validity and accuracy.
According to the discussion of the results for the selected case
study, the validity of the present model is ensured through its phys-
ically acceptable predictions. The general agreement of the present
model predictions with the limited results available in the litera-
ture adds more evidence for the model validity. The discussion also
emphasizes the ability of the present model to describe in detail
the temporal and spatial variations of all flow properties which are
necessary to be treated. These features confirm the present model
accuracy in predicting the flashover characteristics for the severe
case of soot pollution. The model forms a satisfactory tool in design-
ing and dimensioning the insulators of high voltage transmission
lines to avoid their expected fire-caused outages. It is expected
that the predictions of the present model can be extended to cover
wide range of real cases other than the present selected case. Such
cases are associated with different conditions including orientation
and configuration of the burnt field, shape and dimensions of the
insulator string, and the existence of fire-produced solid particles
other than soot. More wide application of the present model can be
achieved with the addition of appropriate sub-models accounting
for the general parameters affecting the mechanism of solid par-
ticles deposition on insulator surfaces. These parameters include
particle shape and size distribution, accurate expression for the
particle capture velocity, and insulator surface roughness.

Appendix A. Mathematical relations for the geometric
description of the insulator

A point P (x’, y’, z’) on the surface of the oblate spheroid shown
in Fig. A.1 can be specified by ordinates x’, y’, and z’ (with the origin
at O’), given by

x′ = a cos b cos , y′ = a cos b sin , and z′ = b sin b (A.1)

where x’, y’, and z’ are related to the space ordinates x, y, and z as

x′ = x − xu, y′ = y − yu, and z′ = z − zu. (A.2)

Fig. A.1 illustrates a tangent plane at a point P on the spheroid
surface and its corresponding outward normal vector. The location

Fig. A.1. Description of the tangent plane and its normal vector in terms of the
derivatives of the position vector of the point P.

of the point P can be represented alternatively using the position
vector �r′ as

�r′ = x′ î+ y′ ĵ + z′ k̂ (A.3)

where î, ĵ,  and k̂ are unit vectors in x’, y’, and z’ directions, respec-
tively.

The plane tangent to the spheroid surface at point P can be rep-
resented by the two  vectors �r′

ˇ
(tangent to ellipse curve) and �r′



(tangent to circle of rotation), given by

�r′ˇ = ∂�r′

∂ˇ
and �r′ = ∂�r′

∂
(A.4)

The outward normal vector perpendicular to the tangent plane
at point P can be represented by the unit vector n̂  given by

n̂ =
�r′


× �r′
ˇ∣∣∣�r′ × �r′
ˇ

∣∣∣ (A.5)

The unit vector n̂ can be re-expressed in terms of cosine direc-
tions An(ˇ, ), Bn(ˇ, ), and Cn(ˇ, ) as

n̂ = An(ˇ, )î + Bn(ˇ, )ĵ + Cn(ˇ, )k̂ (A.6)

The functions of these cosine directions can be obtained from
Eqs. (A.5) and (A.6).

Referring to Fig. A.1, the length l(ˇ) on the half-ellipse to the
point P on an insulator string unit of order j is obtained by

l(ˇ) =
∫̌

−�/2

√
a2 sin2

 ̌ + b2 cos2
 ̌ dˇ (A.7)

The total half-ellipse length Lu for a single insulator unit is cal-
culated as

Lu = l
(

 ̌ = �

2

)
(A.8)

The leakage path length L is the summation of the lengths l(ˇ)
from the lowest point on the insulator string to the specified point
P and is given by

L = (j − 1)Lu + l(ˇ) (A.9)

The length S on the circle of rotation passing the specified point
P is determined by

S = a cos  ̌ (A.10)

Appendix B. Analysis of the particle velocity vectors
adjacent to the insulator surface

Consider the incident velocity vector �V of the soot particles
arriving at the imaginary plane parallel to the tangent plane at the
point P on the insulator surface (Fig. 4). The velocity vector �V is
determined by its known cartesian components up, vp, and wp as

�V = upî + vpĵ + wpk̂ (B.1)

The velocity vector �V  can be written in terms of its compo-
nents in the plane of incidence (inward normal component upn and
tangential component upt ) as

�V = −upnn̂+ upt t̂ (B.2)

The unknown values of upn and upt are determined by

upn = −�V · n̂ and upt =
√∣∣ �V

∣∣2 −
(
upn

)2
(B.3)
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The known unit normal vector n̂ is determined by Eq. (A.6).
On the other hand, the unknown unit tangent vector t̂, which is
required for the reverse transformation, is determined as follows.

The unit vector t̂ can be written in terms of cosine directions as

t̂ = At(ˇ, )î+ Bt(ˇ, )ĵ + Ct(ˇ, )k̂ (B.4)

The cosine directions At(ˇ, ), Bt(ˇ, ), and Ct(ˇ, ) can be
obtained by substituting Eq. (B.4) for t̂ in Eq. (B.2) and equating
with Eq. (B.1).

The velocity components at the insulator surface upn,w and upt,w
calculated by the generic equation (Eq. (8))  are transformed into
their corresponding cartesian components by using equations from
Eqs. (B.1)–(B.4) in a reverse manner.
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